Design and Simulate Modern Fiber Optic Communication Systems


Module 2

 

Optical Fibers

 

(1) Use the Existing Modules / Components for Your Research Papers, Research Projects, Theses and Lab Simulation Experiments.
(2) Modify the Modules / Components to the Next Level for Your Research Papers, Research Projects and Theses.
(3) Integrate Different Modules / Components in the OCSim Package to Realize Your Own Fiber Optic Communication Systems.
(4) Modify the Modules for Co-Simulations with the Third Party Commercial Optical Communication Systems Softwares.

 

Source Code: fiber_modes.m

The LP modes of a step-index fiber are obtained by solving the eigenvalue equation Eq.(4) (see the manual). Eq. (4) is of the form f(\beta ) = 0; the roots of this equation are found using the matlab function fminbnd().

Explore Further this Module:

In a step-index fiber, core index n_{{1}} = 1.45, cladding index n_{{2}} = 1.442, core radius a = 9 microns, wavelength = 1.55 microns.

2.1. Plot the field vs radius for all the modes.
2.2. Plot V vs b curves for LP01, LP11 and LP03 modes. Using this curve, find the cutoff wavelength for the single-mode operation of a fiber with n_{{1}} = 1.46 and Δ =0.005.

.


.

Source Code: fiber_dispersion.m

The signal propagation in a fiber is simulated. Fiber nonlinear effects are ignored. The Fourier transform of the input signal field is taken to obtain the input spectrum. It is multiplied by the fiber transfer function and then the inverse Fourier transform leads to the output pulse.

Explore Further this Module:

2.3 Let   beta2 = 0 s.s/m,   beta1 = (1.5 e-6)/3 e8 s/m and alpha = 0 m-1 . Plot fiber input and output field envelopes and electric field distributions. Is the pulse width at the fiber output different from that at the input? Explain.

2.4 Let  <br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
beta2 = -21 ps.ps/km,   beta1 = 0 s/m and alpha = 0 m-1. Does the pulse undergo a time-shift? Explain.

2.5 Let   beta2 = -21 ps.ps/km,  beta1 = (1.5 e-6)/3 e8 s/m and alpha = 0 m-1. Plot fiber input and output field envelopes and electric field distributions.

2.6 Repeat 2.5 with loss coefficient  alpha = 0.2 dB/km. Does the fiber loss affect the pulse broadening? Compare the pulse widths and peak amplitudes corresponding to 2.5 and 2.6.

2.7 Repeat 2.4 to 2.6 with a rectangular pulse.

.


.

Source Code: fiber_dispersion_envelope.m

Simulation of optical field envelope / total field propagation as a function of distance for various time-steps.

Explore Further this Module:

2.8 Let  beta2 = 0 s.s/m,  beta1 = (1.5 e-6)/3 e8 s/m and alpha = 0 m-1. Observe the evolution of field envelope/total field.

2.9 Let  beta2 = -21 ps.ps/km,   beta1 = (1.5 e-6)/3 e8 s/m and alpha = 0 m-1. Observe the evolution of field envelope/total field.

2.10 Repeat 2.8 and 2.9 with loss coefficient alpha = 0.2 dB/km.

 

.

 Contact Sales: sales@codesscientific.com or call: 1.613.325.7594