Nonlinear Pulse Propagation in Optical Fibers


OCSim Modules

Modern Fiber Optic Communication Systems Simulations with Advanced Level Matlab Modules

 .

Module 10

.

Nonlinear Fiber Optics

.

Nonlinear Pulse Propagation in Optical Fibers


Company Researchers & Developers

Integrate the Modules with your in-house and Commercial Software & Hardware Products

 

(1) Use the Existing Modules / Components for Your Research & Development.
(2) Modify the Modules / Components to the Next Level for Your Research & Development.
(3) Integrate Different Modules / Components in the OCSim Package to Realize Your Own Fiber Optic Communication Systems.
(4) Modify the Modules for Co-Simulations with the Third Party Commercial Optical Communication Systems Softwares.

 

Main Module

nlse_solver.m

Simulation of Nonlinear Schrodinger Equation (NLSE) using the split-step Fourier scheme (SSFS). In SSFS, first NLSE is solved by ignoring nonlinearity over a small fiber section. The linear part is solved using a pair of FFTs. Next, the NLSE is solved by ignoring the linear part. This split-step approach is carried out iteratively.


This Module calls the following Sub Module / Component:

(1) fiber_prop.m
Which is a submodule to solve NLSE.
.

Explore Further this Module:

10.1 Set the dispersion coefficient, beta2 to zero and loss coefficient, alpha to zero. Launch a Gaussian pulse to the fiber. Compare the spectral width before and after propagation. Does the spectrum broaden? Explain. Does the pulse width (in time domain) change after the propagation? Calculate the rms spectral width and plot it as a function of fiber length.

10.2 Set the fiber length to 80 km. Change beta2 from 0 to 14 ps.ps/km with a step of 2 ps.ps/km. Adjust the computational window (tmin and tmax) if necessary. Observe that the spectral broadening is reduced as the dispersion increases. Plot the rms spectral width vs dispersion coefficient beta2. Does the pulse width change as beta2 changes?

10.3 Set the dispersion coefficient, beta2 to -5 ps.ps/km, loss coefficient, alpha to zero and fiber length to 80 km. Launch a secant-hyperbolic pulse to the fiber with the appropriate power so that the soliton is excited. Compare the pulse width before and after propagation. Compare the spectral width before and after propagation. Plot the soliton phase as a function of distance.

.

.


Selected Simulated Results Using this Module


.

 

slide3

 

 Time Diagrams: Red – Input, Blue – Output

 


 

slide5

.

Spectrum: Red – Input, Blue – Output with Linear Scale

 


 

slide4

 

Spectrum: Red – Input, Blue – Output with Logarithmic Scale

 

 

.

.

OCSim Modules details can be seen by clicking the pages below:

OCSim Modules Overview | OCSim Modules (1-18) in the Package

Module (1a) | Module (1b) | Module (1c) | Module (2a) | Module (2b) | Module (2c) | Module (3a) | Module (3b) | Module (4a) | Module (4b) | Module (4c) | Module (4d) | Module (5) | Module (6a) | Module (6b) | Module (7) | Module (8a) | Module (8b) | Module (8c) | Module (9a) | Module (9b) | Module (10) | Module (11a) | Module (11b) | Module (12) | Module (13) | Module (14) | Module (15) Module (16) Module (17) Module (18)


OCSim Modules Brochure | OCSim Modules Selected Publication ReferencesOCSim Modules Application Examples |

OCSim Modules Selected Simulated Results OCSim Modules Videos       

.

Contact Us: Headquarter: Ottawa, Canada covering USA and EuropeDistributors: South AmericaJapanIndiaAustraliaChina, South Korea.